PC1231xNSZOX Series

Description

PC1231xNSZOX Series contains an IRED optically coupled to a phototransistor.

It is packaged in a 4-pin DIP, available in wide-lead spacing option and SMT gullwing lead-form option.

Input-output isolation voltage $(\mathrm{rms}$) is 5.0 kV .
CTR is 50% to 400% at input current of 0.5 mA .

\square Features

1. 4pin DIP package
2. Double transfer mold package (Ideal for Flow Soldering)
3. Low input current type ($l_{\mathrm{F}}=0.5 \mathrm{~mA}$)
4. High resistance to noise due to high common rejection voltage (CMR : MIN. 10kV/us)
5. Reinforced insulation type (Isolation distance : MIN. 0.4 mm)
6. Long creepage distance type (wide lead-form type only : MIN. 8mm)
7. High isolation voltage between input and output ($\mathrm{V}_{\text {iso(rms) }}: 5.0 \mathrm{kV}$)
8. RoHS directive compliant

DIP 4pin Reinforced Insulation Type, High CMR, Low Input Current Photocoupler

Agency approvals/Compliance

1. Recognized by UL1577 (Double protection isolation), file No. E64380 (as model No. PC1231)
2. Approved by BSI, BS-EN60065, file No. 7087, BSEN60950, file No. 7409, (as model No. PC1231)
3. Approved by SEMCO, EN60065, EN60950, file No. 9933036 (as model No. PC1231)
4. Approved by DEMCO, EN60065, EN60950, file No. 99-03814 (as model No. PC1231)
5. Approved by NEMKO, EN60065, EN60950, file No. P99102251 (as model No. PC1231)
6. Approved by FIMKO, EN60065, EN60950, file No. 13986 (as model No. PC1231)
7. Recognized by CSA file No. CA095323 (as model No. PC1231)
8. Approved by VDE, DIN EN60747-5-5 ${ }^{(*)}$ (as an option), file No. 40008087(as model No. PC1231)
9. Package resin : UL flammability grade ($94 \mathrm{~V}-0$)
${ }^{(*)}$ DIN EN60747-5-5 : successor standard of DIN VDE0884

Applications

1. Primary to secondary isolation in switch mode power supply
2. Noise suppression in switching circuit
3. Signal transmission between circuits of different potentials and impedances
4. Over voltage detection

Internal Connection Diagram

(1) Anode
(2) Cathode
(3) Emitter
(4) Collector

Outline Dimensions

(Unit : mm)

1. Through-Hole [ex. PC1231xNSZOX]

Product mass : approx. 0.23 g
3. Wide Through-Hole Lead-Form [ex. PC1231xNFZOX]

Product mass : approx. 0.23 g
2. Through-Hole (VDE option) [ex. PC1231xYSZOX]

Product mass : approx. 0.23 g
4. Wide Through-Hole Lead-Form (VDE option) [ex. PC1231xYFZOX]

Product mass : approx. 0.23 g
(Unit : mm)
5. SMT Gullwing Lead-Form [ex. PC1231xNIPOX]

Product mass : approx. 0.22g
7. Wide SMT Gullwing Lead-Form [ex. PC1231xNUPOX]

Product mass : approx. 0.22g
6. SMT Gullwing Lead-Form (VDE option) [ex. PC1231xYIPOX]

Product mass : approx. 0.22g
8. Wide SMT Gullwing Lead-Form (VDE option) [ex. PC1231xYUPOX]

Product mass : approx. 0.22 g

Date code (2 digit)

1st digit				2nd digit	
Year of production				Month of production	
A.D.	Mark	A.D	Mark	Month	Mark
2010	A	2022	P	January	1
2011	B	2023	R	February	2
2012	C	2024	S	March	3
2013	D	2025	T	April	4
2014	E	2026	U	May	5
2015	F	2027	V	June	6
2016	H	2028	W	July	7
2017	J	2029	X	August	8
2018	K	2030	A	September	9
2019	L	2031	B	October	O
2020	M	2032	C	November	N
2021	N	\vdots	\vdots	December	D

repeats in a 20 year cycle

Factory identification mark

Factory identification Mark	Country of origin
no mark	Japan

* This factory marking is for identification purpose only.

Please contact the local SHARP sales representative to see the actual status of the production.

Rank mark

Refer to the Model Line-up table

Absolute Maximum Ratings
$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Rating	Unit
Forward current	I_{F}	10	mA
$\pm{ }^{*}{ }^{*}$ Peak forward current	I_{FM}	200	mA
§ Reverse voltage	V_{R}	6	V
Power dissipation	P	15	mW
Collector-emitter voltage	$\mathrm{V}_{\text {CEO }}$	70	V
岢 Emitter-collector voltage	$\mathrm{V}_{\text {ECO }}$	6	V
\bigcirc Collector current	I_{C}	50	mA
Collector power dissipation	P_{C}	150	mW
Total power dissipation	$\mathrm{P}_{\text {tot }}$	170	mW
${ }^{* 2}$ Isolation voltage	$\mathrm{V}_{\text {iso (rms) }}$	5.0	kV
Operating temperature	$\mathrm{T}_{\text {opr }}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
${ }^{* 3}$ Soldering temperature	$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

*1 Pulse width $\leq 100 \mu \mathrm{~s}$, Duty ratio : 0.001
*2 40 to $60 \% \mathrm{RH}, \mathrm{AC}$ for 1 minute, $\mathrm{f}=60 \mathrm{~Hz}$
*3 For 10s

■ Electro-optical Characteristics

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	1.2	1.4	V
	Reverse current		I_{R}	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	Terminal capacitance		C_{t}	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{kHz}$	-	30	250	pF
Output	Collector dark current		$\mathrm{I}_{\text {CEO }}$	$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	-	-	100	nA
	Collector-emitter breakdown voltage		$\mathrm{BV}_{\text {CEO }}$	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$	70	-	-	V
	Emitter-collector breakdown voltage		$B V_{\text {ECO }}$	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	6	-	-	V
Transfer characteristics	Collector current		I_{C}	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	0.25	-	2.0	mA
	Collector-emitter saturation voltage		$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	-	0.2	V
	Isolation resistance		$\mathrm{R}_{\text {ISO }}$	DC500V, 40 to $60 \% \mathrm{RH}$	5×10^{10}	1×10^{11}	-	Ω
	Floating capacitance		C_{f}	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-	0.6	1.0	pF
	Response time	Rise time	t_{r}	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	-	4	18	$\mu \mathrm{s}$
		Fall time	t_{f}		-	3	18	$\mu \mathrm{s}$
	Common mode rejection voltage		CMR	$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{kV}(\text { peak }), \mathrm{I}_{\mathrm{F}}=0 \\ \mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{np}}=100 \mathrm{mV} \end{gathered}$	10	-	-	kV/ $\mu \mathrm{s}$

Model Line-up

Lead Form	Trough-Hole		Wide Trough-Hole		Rank mark	$\begin{gathered} \mathrm{I}_{\mathrm{C}}[\mathrm{~mA}] \\ \left(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right) \end{gathered}$
Package	Sleeve					
	100pcs/sleeve					
DIN EN60747-5-5		Approved		Approved	-	
Model No.	PC12310NSZ0X	PC12310YSZ0X	PC12310NFZOX	PC12310YFZ0X	with or without	0.25 to 2.0
	PC12311NSZ0X	PC12311YSZ0X	PC12311NFZOX	PC12311YFZ0X	A	0.5 to 1.25

Lead Form	SMT Gullwing		Wide SMT Gullwing		Rank mark	$\begin{gathered} \mathrm{I}_{\mathrm{C}}[\mathrm{~mA}] \\ \left(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right) \end{gathered}$
Package	Taping					
	2 000pcs/reel					
DIN EN60747-5-5		Approved		Approved	-	
Model No.	PC12310NIP0X	PC12310YIP0X	PC12310NUP0X	PC12310YUP0X	with or without	0.25 to 2.0
	PC12311NIP0X	PC12311YIP0X	PC12311NUP0X	PC12311YUP0X	A	0.5 to 1.25

Please contact a local SHARP sales representative to inquire about production status.

Fig. 1 Test Circuit for Common Mode Rejection Voltage

Fig. 2 Forward Current vs. Ambient Temperature

Fig. 4 Collector Power Dissipation vs. Ambient Temperature

Fig. 3 Diode Power Dissipation vs. Ambient Temperature

Fig. 5 Total Power Dissipation vs. Ambient Temperature

Fig. 6 Peak Forward Current vs. Duty Ratio

Fig. 8 Current Transfer Ratio vs. Forward Current

Fig. 10 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 7 Forward Current vs. Forward Voltage

Fig. 9 Collector Current vs. Collector-emitter Voltage

Fig. 11 Collector - emitter Saturation Voltage vs. Ambient Temperature

Fig. 12 Collector Dark Current vs. Ambient Temperature

Fig. 14 Test Circuit for Response Time

Please refer to the conditions in Fig. 13.

Fig. 13 Response Time vs. Load Resistance

Fig. 15 Frequency Response

Fig. 16 Collector-emitter Saturation Voltage vs. Forward Current

Remarks : Please be aware that all data in the graph are just for reference and not for guarantee.

Design Considerations

- Design guide

While operating at $\mathrm{I}_{\mathrm{F}}<0.5 \mathrm{~mA}$, CTR variation may increase.
Please make design considering this fact.

In case that some sudden big noise caused by voltage variation is provided between primary and secondary terminals of photocoupler some current caused by it is floating capacitance may be generated and result in false operation since current may go through IRED or current may change.
If the photocoupler may be used under the circumstances where noise will be generated we recommend to use the bypass capacitors at the both ends of IRED.

This product is not designed against irradiation and incorporates non-coherent IRED.

- Degradation

In general, the emission of the IRED used in photocouplers will degrade over time.
In the case of long term operation, please take the general IRED degradation (50\% degradation over 5 years) into the design consideration.

- Recommended Foot Print (reference)

SMT Gullwing lead-form

Wide SMT Gullwing lead-form

(Unit: mm)

Manufacturing Guidelines

Soldering Method

Reflow Soldering:

Reflow soldering should follow the temperature profile shown below.
Soldering should not exceed the curve of temperature profile and time.
Please don't solder more than twice.

Flow Soldering :

Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines.

Flow soldering should be completed below $270^{\circ} \mathrm{C}$ and within 10 s .
Preheating is within the bounds of 100 to $150^{\circ} \mathrm{C}$ and 30 to 80 s .
Please don't solder more than twice.

Hand soldering

Hand soldering should be completed within 3s when the point of solder iron is below $400^{\circ} \mathrm{C}$.
Please don't solder more than twice.

Other notices

Please test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions.

Cleaning instructions

Solvent cleaning:

Solvent temperature should be $45^{\circ} \mathrm{C}$ or below Immersion time should be 3 minutes or less

Ultrasonic cleaning:

The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time, size of PCB and mounting method of the device.
Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production.

Recommended solvent materials:
Ethyl alcohol, Methyl alcohol and Isopropyl alcohol
In case the other type of solvent materials are intended to be used, please make sure they work fine in actual using conditions since some materials may erode the packaging resin.

- Presence of ODC

This product shall not contain the following materials.
And they are not used in the production process for this product.
Regulation substances: CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)
Specific brominated flame retardants such as the PBBOs and PBBs are not used in this product at all.
This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC).
-Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), Polybrominated diphenyl ethers (PBDE).

Package specification

- Sleeve package

1. Through-Hole

Package materials
Sleeve : HIPS (with anti-static material)
Stopper: Styrene-Elastomer

Package method

MAX. 100pcs of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers. The product shall be arranged in the sleeve with its anode mark on the tabless stopper side.
MAX. 20 sleeves in one case.
Sleeve outline dimensions

(Unit: mm)

2. Wide Through-Hole

Package materials

Sleeve : HIPS (with anti-static material)
Stopper: Styrene-Elastomer

Package method

MAX. 100pcs of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers.
The product shall be arranged in the sleeve with its anode mark on the tabless stopper side.
MAX. 20 sleeves in one case.
Sleeve outline dimensions

- Tape and Reel package

1. SMT Gullwing

Package materials
Carrier tape: PS
Cover tape : PET (three layer system)
Reel : PS
Carrier tape structure and Dimensions

Reel structure and Dimensions

Dimensions List		(Unit : mm)	
a	b	c	d
330	$17.5^{ \pm 1.5}$	$100^{ \pm 1.0}$	$13^{ \pm 0.5}$
e	f	g	
$23^{ \pm 1.0}$	$2.0^{ \pm 0.5}$	$2.0^{ \pm 0.5}$	

Direction of product insertion

Pull-out direction

[Packing : 2 000pcs/reel]

2. Wide SMT Gullwing

Package materials
Carrier tape : PS
Cover tape : PET (three layer system)
Reel: PS
Carrier tape structure and Dimensions

Dimensions List						
A	B	C	D	E	F	G
$24.0^{ \pm 0.3}$	$11.5^{ \pm 0.1}$	$1.75^{ \pm 0.1}$	$8.0^{ \pm 0.1}$	$2.0^{ \pm 0.1}$	$4.0^{ \pm 0.1}$	$\phi 1.5^{+0.1}$
H	I	J	K			
$12.4^{ \pm 0.1}$	$0.4^{ \pm 0.05}$	$4.1^{ \pm 0.1}$	$5.1^{ \pm 0.1}$			

Reel structure and Dimensions

Dimensions List		(Unit : mm)	
a	b	c	d
330	$22.5^{ \pm 1.5}$	$100^{ \pm 1.0}$	$13^{ \pm 0.5}$
e	f	g	
$23^{ \pm 1.0}$	$2.0^{ \pm 0.5}$	$2.0^{ \pm 0.5}$	

Direction of product insertion

\qquad
Pull-out direction

[Packing : 2 000pcs/reel]

Important Notices

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
--- Personal computers
--- Office automation equipment
--- Telecommunication equipment [terminal]
--- Test and measurement equipment
--- Industrial control
--- Audio visual equipment
--- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection
with equipment that requires higher reliability such as:
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
--- Traffic signals
--- Gas leakage sensor breakers
--- Alarm equipment
--- Various safety devices, etc.
(iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
--- Space applications
--- Telecommunication equipment [trunk lines]
--- Nuclear power control equipment
--- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

