PREPARED BY : DATE		FILE No. LD-29Z07B
	SHARP	FILE No.
APPROVED BY : DATE	1	ISSUE : 14-Dec-17
	DISPLAY DEVICE BUSINESS GROUP	PAGE : 20pages
	SHARP CORPORATION	APPLICABLE GROUP
	SPECIFICATION	DISPLAY DEVICE BUSINESS GROUP
		TREVISION: B
	DEVICE SPECIFICATION FOR TFT-LCD Module MODEL No. LQ315D1VG01	-
These parts an	re complied with the Ro	oHS directive.
□ CUSTOMER'S APPROV	/AL BY	O mio L
	DEVE	T.Ohnishi Jer, Development Division LOPMENT DIVISION BUSINESS UNIT IV BU I (DEVICE COMPANY ARP CORPORATION

.

RECORDS OF REVISION

LQ315D1VG01

SPEC No.	DATE	PAGE	SUMMARY	NOTE
LD-29Z07A	2017/12/14		First edition	
LD-29Z07B	2018/1/26		Changed Chromaticity min/max Changed Chromaticity uniformity value Added High temperature operation test 2	
		19	Clerical corrections of OUTLINE (corrected value and added tape)	
			<u></u>	
	2			
			- x O`	
	5			

1. Application

This specification applies to the color 31.5" TFT-LCD module LQ315D1VG01.

* These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module. It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, and back light system etc. Graphics and texts can be displayed on a 3840 x RGB x 2160 (QFHD) dots panel with about one billion colors by using V by One to interface, +12V of DC supply voltages.

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the liquid crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

Parameter	Specifications	Unit
Dismlay size (Disconsl)	800.757	mm
Display size (Diagonal)	31.526	inch
Active area	697.92 (H) x 392.58 (V)	mm
Pixel Format	3840 (H) x 2160 (V)	nival
Pixel Format	(1pixel = R + G + B dot)	pixel
Pixel pitch	0.18175(H) x 0.18175 (V)	mm
Pixel configuration	R, G, B horizontal stripe	
Color gamut	Adobe RGB 100%	
Display mode	Normally black	
Unit Outline Dimensions (*2)	734.8[W] x 430.0 [H] x 26.5[D]	mm
Mass	5.8 ±0.2	kg
Surface treatment	Anti glare	
	Hard coating: 3H	

3. Mechanical Specifications

(*2) Outline dimensions are shown in Fig.4.

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals)

Using connector: FI-RNE51SZ-HF (Japan Aviation Electronics Industry, Ltd.)

Matching connector: JF08R0R051***MA,FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Industry, Ltd.)

CN1

Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	VCC	+12V Power Supply	
4	VCC	+12V Power Supply	
5	NC	NC(OPEN)	
6	GND		
7	GND		
8	GND	•	
9	Reserved	It is required to set non-connection (OPEN)	
10	Reserved	It is required to set non-connection (OPEN)	
11	O/S_SET	O/S operation setting H: O/S driving ON, L: O/S driving OFF	O/S_SET pin is pulled up 3.3V (by 10kΩ). [Note1]
12	Reserved	It is required to set non-connection (OPEN)	S
13	NC	NC(OPEN)	
14	GND		
15	Reserved	It is required to set non-connection (OPEN)	
16	Reserved	It is required to set non-connection (OPEN)	
17	GND		
18	Reserved	It is required to set non-connection (OPEN)	
19	Reserved	It is required to set non-connection (OPEN)	
20	GND		
21	NC	NC(OPEN)	
22	Reserved	It is required to set non-connection (OPEN)	
23	Reserved	It is required to set non-connection (OPEN)	
24	Reserved	It is required to set non-connection (OPEN)	
25	HTPDN	Hot plug detect	Output(Open Drain)
26	LOCKN	Lock detect (L:Lock,H:Unlock)	Output(Open Drain)
27	GND		I COL
28	Rx0n	V-by-One HS Data Lane0	
29	Rx0p	V-by-One HS Data Lane0	
30	GND		
31	Rx1n	V-by-One HS Data Lane1	
32	Rx1p	V-by-One HS Data Lane1	
33	GND		
34	Rx2n	V-by-One HS Data Lane2	
35	Rx2p	V by One HS Data Lanc2 V-by-One HS Data Lanc2	
36	GND		
37	Rx3n	V-by-One HS Data Lane3	
38	Rx3p	V-by-One HS Data Lane3	
39	GND		
40	Rx4n	V-by-One HS Data Lane4	
40 41		V-by-One HS Data Lane4 V-by-One HS Data Lane4	
41 42	Rx4p CND		
	GND	When One HS Data Laws F	
		v-by-One HS Data Laneb	
43 44 45	Rx5n Rx5p GND	V-by-One HS Data Lane5 V-by-One HS Data Lane5	

LD-29Z07B-3

46	Rx6n	V-by-One HS Data Lane6	
47	Rx6p	V-by-One HS Data Lane6	
48	GND		
49	Rx7n	V-by-One HS Data Lane7	
50	Rx7p	V-by-One HS Data Lane7	

[Note1] The internal circuit figure of the terminal

INote 21	V-by-One® HS Color Data mapping	۱g 🖌
	, a since the color batta mapping	-9

	•	Color Data mapping 🥚		
Packer input & Data				
Unpa	cker output	Data		
	D[0]	R2		
	D[1]	R3		
	D[2]	R4		
Byte0	D[3]	R5		
Dyteo	D[4]	R6		
	D[5]	R7		
	D[6]	R8		
	D[7]	R9(MSB)		
	D[8]	G2		
	D[9]	G3		
	D[10]	G4		
Durto 1	D[11]	G5		
Byte1	D[12]	G6		
	D[13]	G7		
	D[14]	G8		
	D[15]	G9(MSB)		
	D[16]	B2		
	D[17]	B3		
	D[18]	B4		
Byte2	D[19]	B5		
Dytez	D[20]	B6		
	D[21]	B7		
	D[22]	B8		
	D[23]	B9(MSB)		
	D[24]	-		
	D[25]	-		
	D[26]	B0(LSB)		
Byte3	D[27]	B1		
Dyteo	D[28]	G0(LSB)		
	D[29]	G1		
	D[30]	R0(LSB)		
	D[31]	R1		

Fig.1 Block Diagram (LCD Module)

4-2. Backlight driving

DC power supply of LED PWB CONNECTOR

Using connector: H401K(E&T)

Matching connector : 4530K (E&T)

Pin No.	Symbol	Function	Remark
1	VLED-	Cathode(1 st . line of LED PWB1)	
2	VLED+	Anode(LED PWB1 Common)	
3	VLED-	Cathode(2 nd . line of LED PWB1)	
4	VLED-	Cathode(1 st . line of LED PWB2)	
5	VLED+	Anode(LED PWB2 Common)	
6	VLED-	Cathode(2 nd . line of LED PWB2)	
7	VLED-	Cathode(1 st . line of LED PWB3)	
8	VLED+	Anode(LED PWB3 Common)	
9	VLED-	Cathode(2 nd line of LED PWB3)	
10	VLED-	Cathode(1 st . line of LED PWB4)	
11	VLED+	Anode(LED PWB4 Common)	
12	VLED-	Cathode(2 nd line of LED PWB4)	

4.3. Backlight electrical characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Current	Iled	-	-	40	mA	the value of each line.
						(total 8lines) [Note 1]
LED Voltage	VLED	109.1	121.2	133.3	V	Initial Value(Ta=25°C)

[Note1] LED PWB is required current control. LED current (IF) is the value of each line.

[Note 2]The characteristics of the LED are shown in the following table. The value mentioned below is at the case of one LED.

Item	Symbol	Min.	Тур.	Max.	Unit.
Life Time	T _L	-	30,000		hour

LED life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the $Ta = 25^{\circ}C$

[Note 3]Overcurrent and overvoltage may cause LED chip damage. Therefore we ask for design consideration to implement error detective function such as open, overcurrent and overvoltage on LED driver board.

5. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Remark
Input voltage	VI	-0.3 ~ 3.6	V	[Note 1]
12V supply voltage (for Control)	VCC	0~+14	V	
LED Voltage	VLED	145.2	V	
LED Current	Iled	60	mA	Applied to 1 LED line only.
Storage temperature	Tstg	-20~+60	°C	[Note 2]
Operation temperature (Ambient)	Та	$0 \sim +40$	°C	[Note 2] [Note 3]

[Note 1] O/S_SET

[Note 2] Humidity 95%RH Max. (Ta \leq 40°C)

Maximum wet-bulb temperature at 39 °C or less. (Ta>40 °C) / No condensation.

[Note 3]Glass surface temperature: 49°C Max.

6. Electrical Characteristics

6-1.Control circuit driving

Control circu	it driving		Ta	=25 °C			
Pa	arameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Supply voltage	Vcc	11.6	12	12.6	V	[Note 1]
+12V supply	Current dissipation	Icc	-	1.25	2.5	А	[Note 2]
voltage	T 1	I _{RUSH1}	1	-	10	٨	[Note 3]
	Inrush current	I _{RUSH2}	1.2	-	2	А	$Tr=2\sim 20ms$
	ble input ripple voltage	V_{RP}	-	-	100	mVP-P	Vcc = +13.0V
	it Interval	UI	266		1667	\mathbf{ps}	[Note 5]
Allowable	rential input Intra-pair Skew	tRISK_INTRA	0.3			UI	[Note 4]
Differ Allowable	rential input Inter-pair Skew	tRISK_INTER	5			UI	[Note 4]

[Note 1]

Input voltage sequences

 $2.0 \text{ms} < t1 \leq 20 \text{ms}$

200 ms < t2

10ms < t3 < 1s

t4 > 50ms

t5> 10ms

t6 > 1s

Dip conditions for supply voltage $6.5V \leq Vcc < 10.8V$ td < 10ms

Dip conditions for supply voltage is based on input voltage sequence.

Data1: Rx0n, Rx0p, Rx1n, Rx1p, Rx2n, Rx2p, Rx3n, Rx3p, Rx4n, Rx4p, Rx5n, Rx5p, Rx6n, Rx6p, Rx7n, Rx7p, Rx8n, Rx8p, O/S_SET

[Note]About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Typical current situation: 1024 gray-bar patterns. (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8.

Maximum current condition: Full White pattern.

[Note 3] Vcc12V inrush current characteristics (For reference)

[Note 4] Differential input Allowable Intra-pair Skew

Differential input Allowable Inter-pair Skew

[Note 5] Eye diagram (Eye mask)

	X[UI]	Y[mV]
Α	0.25	0
В	0.3	50
С	0.7	50
D	0.75	0
E	0.7	-50
F	0.3	-50

7. Timing characteristics of input signals

7-1. Timing characteristics

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	-						
Clock	Frequency	1/Tc	69	74.25	76	MHz	
	Horizontal total	TH	542	550	600	clock	
	110112011tai totai	111	7.3	7.41	8.05	μs	
	Horizontal period	TP	5	11		clock	
Hsync	Horizontal Back poach	TS	10	37	Total < 512	clock	
	Horizontal front porch	TF	10	-		clock	
	Horizontal period (High)	THd	480	480	480	clock	
	Vertical period	TV	2218	2250	3 000	line	
	vertical period	1 V	47	60	63	Hz	
Vsync	Vertical period (High)	TVd	2160	2160	2160	line	
	Vertical back porch	TVb	13		Total	line	
	Vertical front porch	TVf	2	2		line	
	Vertical sync width		1	-	≤ 2048	line	

Timing diagrams of input signal are shown in Fig.2.

[Note]-When vertical period is very long, flicker and etc. may occur.

- -Please turn off the module after it shows the black screen.
- -Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.
- -As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

LD-29Z07B-10

Fig.2 Timing characteristics of input signal

7-2. Input data signal and display position on the screen

2160

Display position of Dat(V,H)

©Copyright 2018 SHARP All rights reserved.

[Colors &														D	ata	sigr	nal														
	Gray	Gray	R0	R1	R2	R3	R4	R5	R6	R7	R8	R9	G0	G1	G2	G3	G4	G5	G6	G7	G8	G9	B0	B1	B2	B3	B4	В5	B6	B7	B8	В9
	scale	Scale																														
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
r	Green	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Colo	Cyan	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ba	Magenta	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•1	1	1	0	0	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ŷ	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	•0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e of	仓	\downarrow					ļ	ļ										ļ										Ļ				
Scal	Û	\downarrow						Ļ									,	ļ										L				
ray !	Brighter	GS1021	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	Û	GS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
u	Ŷ	GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gree	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
of (仓	\downarrow						L						-				L										L				
Gray Scale of Green	Û	\downarrow						L										L										L				
ay S	Brighter	GS1021	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Gr	Û	GS1022	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0
	Green	GS1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Blu	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
e of	仓	\downarrow					ļ	L									ļ	Ļ									`	L				
Gray Scale of Blue	Û	\downarrow						L										L										l				
ray	Brighter	GS1021	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1
Ð	Û	GS1022	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	Blue	GS1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
0 · I	ow level	voltage				1: F	Ligh	10		vol	hand	,																				

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

0: Low level voltage,

age, 1: High level voltage.

Each basic color can be displayed in 1024gray scales from 10 bit data signals. According to the combination of total 30 bit data signals, the about one billion-color display can be achieved on the screen.

9. Optical characteristics

Test conditions: $Vcc = 12.0V$, $ILED = 40 \text{ mA}$, $Timing = 60 \text{Hz}$, $Ta = 25^{\circ}\text{C}$										
Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark		
Viewing angle	Horizontal	<i>θ</i> 21 <i>θ</i> 22	CP > 10	70	88	-	Deg.	[Nioto1][Nioto4]		
range	Vertical	<i>θ</i> 11 <i>θ</i> 12	CR≧10	70	88	-	Deg.	[Note1][Note4]		
Contra	st ratio	CRn		750	1,000	-		[Note2][Note4]		
Respon	se time	τDRV		-	8	12	ms	[Note3][Note4][Note5] O/S driving ON		
Chromotiai	try of white	Х		0.283	0.313	0.343	-			
Chromatici	ty of white	у		0.299	0.329	0.359	-			
Chromoti	sites of rod	Х		0.610	0.640	0.670	-		\triangle	
Chromatic	city of fed	у		0.310	0.340	0.370	-	[Note 4]		
Chromatici	ty of groop	Х	$\theta = 0 \deg$	0.180	0.210	0.240	-			
Chromatici	ty of green	у		0.690	0.720	0.750	-			
Chromotio	ity of blue	Х		0.120	0.150	0.180	-			
Chromaticity of blue		у		0.030	0.060	0.090	-			
Luminance of white		Y _{L1}		530	700	-	cd/m ²	[Note 4]		
Luminance uniformity		$\delta_{\rm W}$			-	1.33		[Note 6]		
Chromaticity uniformity		$\delta u', \delta v'$				0.0175		[Note 7]	\triangle	

Measurement condition: Set the value of duty to maximum luminance of white.

*The measurement shall be executed 60 minutes after lighting at rating.

[Note] The optical characteristics are measured using the following equipment.

Fig.3-1 Measurement of viewing angle range and response time.

Fig.3-2 Measurement of Contrast, Luminance, Chromaticity.

Viewing angle range: EZ-CONTRAST Response time : Photo Diode [Note 1]Definitions of viewing angle range:

[Note 2]Definition of contrast ratio:

The contrast ratio is defined as the following.

Luminance (brightness) with all pixels white

Luminance (brightness) with all pixels black

[Note 3]Definition of response time

The response time (τ_{Drv}) is defined as the following figure and shall be measured by switching the input signal for "five luminance ratio (0%, 25%, 50%, 75%, and 100%)" and "five luminance ratio (0%, 25%, 50%, 75%, and 100%)".

	0%	25%	50%	75%	100%
0%		tr: 0%-25%	tr: 0%-50%	tr: 0%-75%	tr: 0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td: 100%-75%	

t*: x-y...response time from level of gray(x) to level of gray(y)

$$\tau_{\rm Drv} = (t^*: x-y)/20$$

[Note 4] This shall be measured at center of the screen.

[Note 5] Response time is the value when O/S driving is used at typical input time value.

[Note 6]Definition of white uniformity

White uniformity is defined as the following with 9 points measurement.

[Note 7] Chromaticity uniformity

Chromaticity uniformity of white is defined as the following with 9 points measurement.

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Voltage difference generated by this switching, $\Delta VLED$, may affect a sound output, etc. when the power supply is shared between the LED PWB and its surrounding circuit. So, separate the power supply of the LED PWB with the one of its surrounding circuit.
- c) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- d) Since the front polarizer is easily damaged, pay attention not to scratch it.
- e) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- f) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- g) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- h) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- i) The module has some printed circuit boards (PCBs) on the back side, take care to keep them from any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be

damaged.

- j) Observe all other precautionary requirements in handling components.
- k) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc... So, please avoid such design.
- 1) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- m) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- n) This LCD module is designed to prevent dust from entering into it. However, there would be a possibility to have a bad effect on display performance in case of having dust inside of LCD module. Therefore, please ensure to design your product to keep dust away around LCD module.
- o) Make sure that the LCD module is operated within specified temperature and humidity. Measures against dust, water, condensation, vibration, and heat dissipation structure, etc. are required at the cabinet or equipment side. Avoid combination of background and image with large different luminance. Please consider the design and operating environment.
- p) Ultra-violet ray filter is necessary in outdoor environment.
- q) Operation for 24 hours a day is NOT recommended.
- r) When the module is turned on, you might hear cracking noises coming from the module until it warms up. Similarly, this phenomenon might occur when the module is turned off until it cools down. This phenomenon occurs by a large amount of heat generation due to a big module. Therefore, it is not a defect.
- s) Image retention may occur if same fixed pattern is displayed for a long time. In some cases, it may not disappear. It is recommended to use moving picture periodically. After long-term static display, periodical power-off or screen saver is needed. For screen saver, moving picture or black pattern is strongly recommended.
- t) Do not put a laminate film on LCD module, after peeling of the original one. If you put on it, it may cause discoloration or spots because of the occurrence of air gaps between the polarizer and the film.
- u) Ground module bezel to stabilize against EMI and external noise.

11. Packing form

- a) Piling number of pallets: 2 Maximum
- b) Packing quantity in 1 pallet : 36pcs (18pcs ×2carton)
- c) Carton size: $850 (W) \times 1,110 (D) \times 1,138 (H)$
- d) Total mass of one carton filled with full modules: 244kg
- e) Packing Form is shown in Fig.5.

12. Reliability test item

*only as for the module.

No.	Test item	Condition
1	High temperature storage test	Ta=60°C t=240h
2	Low temperature storage test	Ta=-20°C t=240h
3	High temperature and high humidity operation test	Ta=40°C ; 95%RH t=240h (No condensation)
4	High temperature operation test 1	$Ta=40^{\circ}C$ $t=240h$
5	High temperature operation test 2	Tp=60°C t=16h
6	Low temperature operation test	$Ta=0^{\circ}C$ t=240h
7	Vibration test* (non-operation)	Frequency: 10~57Hz/Vibration width (one side): 0.075mm : 58~500Hz/Acceleration: 9.8 m/s ² Sweep time: 11 minutes Test period: 3 hours (1h for each direction of X, Y, Z)
8	Shock test* (non-operation)	Maximum acceleration: 294m/s ² Pulse width:11ms, sinusoidal half wave Direction: +/-X, Y, Z once for each direction.
9	ESD	At the following conditions, it is a thing without incorrect operation and destruction. (1)Non-operation: Contact electric discharge +/-10kV (2)Operation Contact electric discharge +/-20kV (2)Operation Contact electric discharge +/-8kV Non-contact electric discharge +/-15kV Conditions: 150Pf, 3300hm

[Note] these items apply to the single module.

[Result evaluation criteria]

Under the display quality test condition with the normal operation state, there shall be no change, which may affect a practical display function.

13. Others

1) Lot No. Label

The label that displays SHARP, product model (LQ315D1VG01), a product number is stuck on the back of the module.

Our management product number might be filled.

- 3) Adjusting volume has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- 4) Disassembling the module can cause permanent damage and should be strictly avoided.
- 5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 6) The chemical compound, which causes the destruction of ozone layer, is not being used.
- 7) When any question or issue occurs, it shall be solved by mutual discussion.
- 8) This module is corresponded to RoHS.
- 9) Rust on the module is not taken up a problem.
- 10) Appearance quality and standard are referred to the outgoing incoming inspections.

14. Carton storage condition

Temperature	0°C to 40°C
Humidity	90%RH or less
Reference condition	n : 20°C to 35°C, 85%RH or less (summer)
	: 5°C to 15°C, 85%RH or less (winter)
	• the total storage time (40°C,95%RH) : 240h or less
Sunlight	Be sure to shelter a product from the direct sunlight.
Atmosphere	Harmful gas, such as acid and alkali which bites electronic components and/or
	wires must not be detected.
Notes	Be sure to put cartons on palette or base, don't put it on floor, and store them with
	removing from wall
	Please take care of ventilation in storehouse and around cartons, and control
	changing temperature is within limits of natural environment
Storage life	1 year

©Copyright 2018 SHARP All rights reserved.